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Here we study the dynamics of a bubble or drop as it is driven by a pressure gradient 
through a capillary tube. For the case of a straight capillary, the drop can either 
approach a steady-state shape or the rear of the drop develops a re-entrant cavity. 
Also, depending on the initial conditions, the drop can break apart into smaller drops. 
For flow through a constricted capillary tube, depending on the physical parameters of 
the problem, the drop can either move through the constriction or break into two or 
more pieces as it moves past the constriction. We study this snap-off process 
numerically and determine the effect of the physical parameters on the dynamics of the 
drop. 

1. Introduction 
Foam flow in porous media has attracted considerable interest recently because of 

its applications to enhanced oil recovery and hazardous waste management. These 
foams have been shown to reduce the gas mobility, and therefore reduce gravity 
override and channelling which would otherwise lead to premature gas breakthrough. 
Hence using foams as a means of sweeping out a given porous material of either oil or 
another liquid appears to be a very promising process. The fundamental mechanism 
associated with the formation of a fcam in porous media is called snap-off. This 
process was identified by Roof (1970) as the primary mechanism in the breakup of a 
droplet (or bubble) as it travels through a porous medium. In particular, as a droplet 
of one liquid passes through a constriction in its path, the capillary pressure at the nose 
of the droplet is less than the capillary pressure at the neck of the constriction. This 
pressure difference will initiate an instability along the interface which splits the droplet 
into two. Since the texture, effective viscosity and other macroscopic properties of the 
foam depend on the size of bubbles being generated, it is of practical interest to 
understand the breakup of a gas bubble in a porous medium. In this study we use 
straight and constricted capillaries as a simplified model for a pore geometry. Our goal 
is to present a numerical study of the deformation and breakup of a drop as it travels 
through the capillary tube due to an imposed pressure gradient. 

Under the assumption of creeping flow, the axisymmetric motion of a neutrally 
buoyant drop or bubble moving through a straight or constricted circular capillary is 
investigated. We will assume that the suspending fluid has viscosity p while the drop 
has a viscosity hp. Hence h is the viscosity ratio and we will find that the dynamics of 
the drop will depend on A. The limit of h = 0 or h small can be considered as the case 
of a bubble. Therefore, our results are applicable to either a drop or bubble, depending 
on h and we will use the words bubble or drop interchangeably with the specific 
meaning depending on the value of A. The problem is solved numerically by using a 
boundary integral method. This numerical method has been used by many researchers 
and is proven to be effective in solving free boundary problems. For example, 
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Youngren & Acrivos (1976) and Rallison & Acrivos (1978) studied the deformation of 
a gas bubble and viscous drop in an extensional flow; Lee & Leal ( 1  982) and Chi & Leal 
(1989) considered a solid sphere and a viscous drop moving toward a fluid interface. 

The motion of a drop or bubble in a capillary tube has been studied by others. For 
example, Martinez & Udell (1990) computed the steady-state solutions of a neutrally 
buoyant axisymmetric drop through a straight capillary. The drop size in their studies, 
defined to be the ratio of undeformed drop radius a, to the radius of the tube R,, is 
between 0.5 and 1.15. Their results agree well with the experiments carried out by Ho 
& Leal (1975). They also reported a re-entrant cavity at the back of a steady-shape 
drop for capillary number, Ca = ,uV/y, around 0.75 and ao/R, = 0.726. Here ,u is the 
viscosity, V is the average bulk velocity of the suspending fluid and y is the constant 
interfacial surface tension. In this study, we compute the transient motion of a drop in 
both a straight and a constricted capillary tube. Depending on the initial conditions 
and the capillary number, we find that the drop can either approach a steady shape, 
break up into smaller drops or have a jet of suspending fluid penetrate from the back. 
Thus our computations in the straight capillary case not only verify the previous results 
on the steady-state behaviour of a drop but also allow us to consider values of the 
capillary number where only unsteady solutions are found to exist. Recently, Olbricht 
& Kung (1992) carried out an extensive experimental study for the motion of drops in 
a straight capillary. They considered capillary numbers from 0.05 to greater than 4 and 
determined the critical value that leads to drop breakup for a wide range of drop sizes 
and viscosity ratios. Our computations show a close resemblance to the dynamic 
behaviour of the drops in these experiments. Also, recently, Borhan & Mao (1992) 
extended the solutions of Martinez & Udell (1990) to include the presence of 
surfactants. In a related work Pozrikidis (1992) studied the periodic motion of a train 
of viscous drops settling or rising due to buoyancy in a straight capillary tube. 

There has been extensive work on the motion of a semi-infinite bubble in a straight 
capillary tube. For example, Bretherton (1961) used lubrication theory to study the 
steady translation of an inviscid bubble for a,/R, 9 1 and Ca + 0. His results show that 
there is a thin film with constant thickness between the bubble and the tube wall, and 
the thickness of the film is a function of Ca. Bretherton also carried out experiments 
to check the theory and found that the theory underpredicts the measured values of 
film thickness as Ca becomes small. Similar conclusions are reported from the 
experimental investigations of Schwartz, Princen & Kiss (1986). Reinelt & Saffman 
(1985) used finite difference methods and Shen & Udell (1985) used finite element 
methods to compute the leading meniscus of a semi-infinite bubble. Martinez & Udell 
(1989) computed both leading and trailing menisci of a large bubble using the 
boundary integral method. 

For a,/R, 6 1, Hetsroni, Haber & Wacholder (1970) used the method of reflections 
to solve for the flow fields in and around a single spherical drop in a capillary tube. 
Upon substituting the velocity fields in the normal stress balance, they also obtained 
the leading-order correction for the deformed drop shape provided Ca + 0. Brenner 
(1971) obtained the extra pressure loss due to the presence of the drop using the 
reciprocal theorem for low-Reynolds-number flow. Brenner’s results indicate that the 
value of extra pressure loss can be either positive or negative depending on the 
magnitude of viscosity ratio A. 

For the flow of a drop or bubble through a constricted capillary, Goldsmith & 
Mason (1963) connected two capillaries of radius 0.1 cm and 0.4 cm to form half of a 
constriction. They observed a series of bubbles being generated near the entry of the 
smaller capillary when a large single bubble was driven into the smaller capillary from 
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the large one. Roof (1970) analysed the static capillary pressure difference across an 
oil-water interface and found that, for a given radius of constriction, there is an 
equilibrium position of the leading meniscus of the interface beyond which snap-off 
will occur if water can flow into the constriction. His experiments confirm the results 
but a groove must be cut axially along the constriction to form a channel for water to 
flow into the constriction. Otherwise, no snap-off was observed even when the drop 
front passes the predicted equilibrium position and the flow of suspending fluid was 
stopped. He then observed that the drop maintains its shape and position for hours. 
Olbricht & Leal (1983) also found snap-off of a gas bubble at the first constriction in 
a periodically constricted capillary tube in their experimental study. Martinez & Udell 
(1988) studied numerically the motion of a drop through a periodically constricted tube 
but did not observe snap-off. For the case of ao/R,  9 1, Shen (1984) used lubrication 
theory and finite difference methods to compute the growth of a liquid collar at the 
constriction. Although the results indicate that the collar is growing in time, no snap- 
off was observed numerically. Gauglitz, St. Laurent & Radke (1988) determined the 
breakup time and the generated bubble length experimentally for the flow of a large 
bubble in a constricted capillary. Combining Bretherton’s results for the film thickness 
and the analysis of Hammond (1983) for the thin film instability, they found that the 
breakup time is inversely proportional to the square of the bubble capillary number 
Ca, while the generated bubble length is inversely proportional to Ca,. Their bubble 
capillary number Ca, is defined as ,uV,/y, where V, is the steady velocity of the bubble 
in the straight section of the tube. The experimental results on the breakup time and 
generated bubble length agree very well with the theoretical predictions. Gauglitz & 
Radke (1990) derived a small-slope evolution equation for the thickness of a thin film 
in a constricted capillary which retains the essence of the curvature terms in a 
cylindrical geometry. They solved the evolution equation by finite element methods 
and showed that the liquid film grows in time at the neck of the constriction and snaps 
off a new bubble. Using a boundary integral method, we solve the Stokes equations 
with the complete boundary conditions and show the dependence of the snap-off 
mechanism on the initial drop configuration, drop size, capillary number and viscosity 
ratio. 

We begin with a formulation of the equations of motion in $2. Then in $ 3  we 
describe the numerical method and discuss the accuracy and convergence of the 
numerical scheme. The dynamics of the drop is dependent on the initial conditions and 
is discussed in $4. The dynamics of the drop in a straight capillary are discussed in $ 5  
and in $6 we discuss the results for the constricted capillary tube. 

2. Formulation 
We consider the axisymmetric flow of a drop or bubble in a capillary tube as shown 

in figure 1. A cylindrical coordinate system is employed with the z-axis parallel to the 
centreline of the capillary tube. The drop, ad, is assumed to be neutrally buoyant so 
the effects of gravity are neglected. The volume of the drop is $nu& where a, is its 
undeformed radius. The suspending fluid in 52 is driven by an imposed pressure 
gradient and flows at a constant volume flux Q. The Reynolds number is assumed to 
be small so the system is in a state of creeping motion. 

The governing equations for the suspending fluid are conservation of mass and 
momentum : 

0 - v  = 0, (2.1) 
V.tJ(V) = 0, (2.2) 
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r = w(z\ 

Z R 

FIGURE 1 .  A bubble in a constricted capillary tube. 

for ~ € 0 ,  where a(u) = -p/+p{Vu+ (VU)~}, u is the velocity field,p is the pressure, and 
p is the viscosity of the suspending fluid. Similarly for the drop where x E a,, we have 

v - u  = 0, 

v * a(u) = 0, 

where a(u) = -pd/+hp{Vu+(V~)T} and u is the velocity field, pd is the pressure, and 
Ap is the viscosity of the drop. 

The boundary condition along the tube wall is no slip: 

v = 0. (2.5) 

Along the interface between the drop and the suspending fluid, f, the boundary 
conditions are the continuity of velocity 

u = v, 
the stress balance condition 

a(v)-n-a(u)*n = y(V.n)n, (2.7) 

and the kinematic condition 

where y is the constant interfacial surface tension, n is the unit normal vector pointing 
away from the suspending fluid, and Y is the position vector on f. Three conditions 
are necessary on f since the interface is a free surface and has to be determined together 
with the velocity and pressure fields. Finally, we require that the velocity of the 
suspending fluid approaches Poiseuille flow far ahead of and behind the drop and the 
constriction, i.e. as IzI +a, 

where Q is the constant volume flux and e, is the unit vector along the axis of the 
cylindrical tube. 

The governing equations and boundary conditions can be non-dimensionalized. 
Select Ro, the radius of the straight section of the tube, as the lengthscale; V = Q/xR: ,  
which is the average velocity of the suspending fluid, as the velocity scale; p V / R ,  as the 
unit of pressure and R,/ V as the unit of time. The dimensionless boundary conditions 
along the tube wall are 

u = O  at r = w ( z ) ,  -a <z<a, (2.10) 
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where r = w(z) describes the geometry of the tube wall. At the free surface r, the 
conditions are 

u = v ,  (2.11) 

(2.12) 
1 

Ca 
a(u)-n-a(u).n = -(V.n)n, 

ay 
-(x, t ) . n  = v * n .  
at 

(2.13) 

Also 
v = 2(1 - r2 )e ,  for z++oo, 0 < r < 1 (2.14) 

at the upstream and downstream boundaries. 
Three parameters emerge for the flow of a drop in a straight capillary tube. They are 

the effective drop radius a = a,,/&, the viscosity ratio h and the capillary number 
Ca = ,uV/y. The capillary number is a measure of the relative importance of the viscous 
force to the surface tension force. Our aim is to determine the evolution of the drop as 
a function of these three parameters. As we will see, the initial conditions will also 
influence the dynamics of the drop and must be included in any discussion of the drop 
behaviour. In addition to these three parameters, the geometry of the capillary must be 
determined. For a straight-sided capillary tube, w = 1 for all values of z .  For a 
constricted capillary tube the function w(z) must be specified. We will use the 
function 

r = w(z) = 1 .O - d{ 1 .O + cos (nzll)) (2.15) 

for -1  6 z 6 I ,  and w = 1 otherwise. Note that the neck of the constriction is centred 
at the origin, and 2d and 21 specify the depth and the length of the constriction, 
respectively. Gauglitz & Radke (1990) also used (2.15) for the shape of the constriction 
in their lubrication analysis. Because of the lubrication assumption in their study, they 
were required to have d/1 small. Here we are free to select any value of this ratio. 

3. Numerical method 
In order to solve the Stokes equations for this moving boundary problem we 

reformulate the equations of motion into a system of integral-differential equations. 
Only an outline of the numerical method used to solve these equations is given here. 
Details can be found in Tsai (1994). The boundary integral equations for the unknown 
velocities and tractions are derived using the Green's functions for the Stokes 
equations given by Ladyzhenskaya (1969). The boundary integral equations are (e.g. 
see Pozrikidis 1992) 

(1 + 4 Cki + (1 - A)  q& y )  u i w  dT+ U X ,  y )  V i 0 . l )  dT, 

and 

-J q , ( x , y )  t i (v (y) )dTw = - U,,(x,y)(V.n)n,(y)dT for X E T , .  (3.2) 
r w  d ,  
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Here Cki is the principal-value tensor and depends on the smoothness of the boundary, 
ni is the unit normal along the boundary and the tractions t i ( d y ) )  = g i k n k .  The 
boundary r, includes the tube wall plus an upstream and a downstream boundary far 
away from the drop and the constriction. The upstream and downstream boundaries 
are necessary in order to have a finite domain of integration. Otherwise we need to 
integrate along the whole tube wall out to infinity. The kernels of the integral equations 
are 

> 

and 

When the motion is axisymmetric, the surface integrals can be reduced to line integrals 
along the generating curve of the boundary by performing the azimuthal integrations 
analytically. 

Given an initial shape for the drop, the solutions of the integral equations can be 
determined numerically. This is done by approximating the integral operator by a 
linear system of equations. We start by subdividing each boundary with a set of 
boundary nodes. The unknown variables along the boundaries are approximated using 
quadratic interpolation between every three nodes. To ensure the continuity of the 
curvatures, cubic spline interpolations for the axial and radial coordinates of the 
interface as functions of arclength are also used. All the numerical integrations are 
carried out with a six-point Gauss quadrature. In this way we generate a full coefficient 
matrix which is solved using Gauss elimination. For a well-posed problem, either 
velocities or stresses (or some combinations of both) have to be specified along the 
boundaries. Hence two unknowns need to be determined at each boundary node. We 
also need to specify a reference pressure at the upstream boundary in order to 
guarantee a unique solution at the downstream boundary. Special care is also needed 
for the boundary nodes located at the corner. The kernel U,,(x,y) has a logarithmic 
singularity when y --f x. This is treated by subtracting the logarithmic behaviour of the 
singularity from the integrands and reducing the integrands with the logarithm 
singularity into a regular part which can be computed numerically and a singular part 
which is evaluated analytically. Once the linear system of equations is solved and the 
surface velocities are determined, a second-order Runge-Kutta method is used to 
integrate the kinematic condition in time. This procedure is then iterated in time in 
order to determine the evolution of a drop through a straight or constricted capillary. 

The accuracy of the numerical solutions can be assessed by monitoring the solutions 
of the integral equations and the changes in the drop volume at each time step. 
Convergence checks are done by doubling the number of boundary nodes, N,  on the 
drop surface while keeping the ratio A t / A s  fixed. They indicate that the scheme is at 
least second-order accurate. Here At is the time step and As is the distance between 
successive grid points along the interface and is proportional to 1 / N .  In figure 2 we plot 
the percentage volume change versus time for the evolution of an initially spherical 
bubble moving through a constricted capillary with Cu = 0.1, a = 0.9 and h = 0.001. 
The time evolution of the bubble interface is illustrated in figure 8 and will be discussed 
later. We find that the error associated with the drop volume increases in time. 
However, it can be controlled and kept within a desired tolerance over a finite time 
interval by taking a large enough number of grid points. The changes in drop volume 
are always within 1 %  of the original volume throughout the course of the 
computations. 
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FIGURE 2 .  Changes in the drop volume versus time. 

The upstream and downstream computational boundaries are taken at least R, units 
away from the bubble and the constriction. The position of the upstream and 
downstream computational boundaries remain fixed in general. However, in the 
straight capillary the bubble travels a considerable distance and can get close to the 
downstream boundary. Hence in this case the computation is stopped and restarted 
with repositioned computational boundaries. The solutions are constantly monitored 
to ensure that Poiseuille flow is being satisfied at the two ends of our computational 
boundaries. For the cases presented here, the worst deviation from the parabolic 
profile was about 1.3 % and occurred when the bubble was less than At units from 
snapping off. All computations are performed on the IBM RS6000 and HP9000 
workstations with double precision. 

4. Initial conditions 
In this section, we illustrate the effect of the initial configuration on the dynamics of 

the drop. In particular, no pressure gradient will be imposed across the capillary tube 
so that the motion is due only to surface tension. This is achieved with our numerical 
method by rescaling the equations so that the dependence of Cu in the normal stress 
condition is shifted to the conditions on the upstream and downstream boundaries. 
This can be done by selecting a new unit of velocity as y /p ,  pressure as y /R ,  and time 
as R,p/y .  In doing this we can turn off the flow by setting Cu = 0 and compute the 
evolution of the interface driven solely by surface tension. In figure 3 we place two 
drops of ellipsoid shape with the same volume but different aspect ratios in a capillary 
tube and let them evolve in time. We set a = 0.9 for both drops but in figure 3(a)  the 
aspect ratio is equal to 0.087 while in figure 3(b) we set it equal to 0.038. Depending 
on the aspect ratio, we see that the drop can either relax back to a spherical shape as 
in figure 3(u), or as in the case of figure 3(b), break up into three smaller drops. We 
call the latter behaviour pinch-off: it is driven by surface tension and is due solely to 
the initial shape of the drop. This pinch-off instability has also been observed in the 
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FIGURE 3. Evolution of an initially ellipsoidal drop with a = 0.9 and no imposed pressure 
gradient: (a) aspect ratio 0.087; (b)  aspect ratio 0.038. 

computations of E. J. Hinch (1988, personal communication). Hence in choosing the 
initial data for our flow problem we need to be careful not to excite this instability and 
confuse it with the snap-off instability. Both instabilities are driven by surface tension 
but the latter is the result of the bubble moving through the constriction (see e.g. 
Schwartz et ul. 1986 for a discussion of the stability of a thin stagnant films). The initial 
data chosen here will be either a sphere or an ellipsoid for the computations in a 
straight capillary. In the constricted-tube cases we choose either a sphere or the steady- 
state shapes determined from the calculations in the straight capillary tube. 

5. Straight capillary 
We begin the study of the dynamic behaviour of a drop in a capillary tube by 

considering first the straight capillary. It is important to identify the types of allowable 
behaviour in this simple geometry before moving on to the constricted capillary tube. 
Previous numerical studies have determined steady-state drop profiles. Here we solve 
the initial value problem and are able to determine the unsteady behaviour of a drop 
in a straight capillary tube as well as its evolution into a steady-state solution when it 
exists. 

The parameters for this problem are the effective radius a, the viscosity ratio h and 
the capillary number, Cu. As pointed out in previous studies, Ca plays an important 
role in determining the existence of steady-state solutions. Typically, for small values 
of Ca a steady-state profile can be found, but as Cu increases large deformations of the 
drop shape are expected and the existence of a steady-state solution is not clear. A 
spherical drop can fit in the tube only for a < 1 so one might expect that the behaviour 
of the drop as a function of a could change in the neighbourhood of 1. This is 
consistent with the results of Martinez & Udell(l990) who reported that for a < 0.7, 
the drop shapes are insensitive to large variations in Cu and viscosity ratio, while the 
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FIGURE 4. Steady drop shape for Ca = 0.05, 0.1, 0.2, 0.5 from right to left: (a) a = 0.9, h = 0.001; 
( b ) a = 1 . 2 , h = 0 . 0 0 1 ; ( ~ ) a = 0 . 9 , h = 0 . 1 ; ( d ) a = 1 . 2 , h = 0 . 1 .  

computed steady-state solutions for a z 1.1 show very good agreement with the 
asymptotic behaviour for a & 1. In this study we will focus on two drop sizes, a = 0.9 
and 1.2. We note that a sphere is a possible steady-state solution in the a = 0.9 case 
when there is no flow, hence we might expect some qualitative differences in the 
transient behaviour for the two cases. 

By using our numerical scheme, we can march in time to determine the steady-state 
solutions of our problem. In figure 4, we plot the steady-state profiles for the effective 
radii a = 0.9 and 1.2, h = 0.001 and 0.1, for values of Ca from 0.05 to 0.5. For ease 
of comparison, the front of each drop is placed at z = 0. First note that for a = 0.9 the 
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FIGURE 5. (a) Film thickness as a function of capillary number; ---, h = 0.1; -, h = 0.001; 
0, Taylor (1961). (b)  Steady-state drop velocity as a function of capillary number for a = 1.2; 
0, h = 0.001; ., h = 0.1. 

viscosity ratio h does not appear to have a significant effect on the drop profiles. For 
a = 1.2, we do notice a mild difference in the profiles for the larger values of Ca. In 
particular, we can see that for Ca = 0.5, the h = 0.1 drop extends further in the axial 
direction than the h = 0.001 drop. If we were to look carefully, a similar difference 
occurs for the other capillary numbers. This is consistent with the fact that a more 
viscous drop will have a stronger resistance to the shearing from the suspending fluid 
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and hence the overall length is longer in the direction of the imposed flow. A more 
significant effect on the profiles occurs as we vary the capillary number. Both the 
overall length and the curvature near the front of the drop increase with Ca while the 
curvature at the trailing interface decreases. The drop becomes more tapered from the 
front for larger Ca, which in turn increases the film thickness between the drop and the 
tube wall. Note that for a = 1.2, a film of constant thickness develops near the centre 
portion of the drop. The thickness of this film depends strongly on Ca but only weakly 
on A. In figure 5(a) we plot the computed film thickness along with the experimental 
data from Taylor (1961) taken from his figure 2 where h z lop4. We see that the 
computed film thickness agrees well with the experimental results for Ca < 0.1 but 
deviates slightly for Ca 2 0.2. Figure 5(a)  also shows that, as h decreases, the 
computed film thickness approaches the experimental data as expected. In figure 5 (b) 
we plot the steady-state velocity of the bubble, V,, as a function of Ca. The curves are 
characteristic of other steady-state calculations, e.g. see Martinez & Udell (1990). We 
note that the numerical results are for values of Ca larger than those previously 
appearing in the literature. 

As Ca increases, we find that steady-state solutions no longer exist. For large values 
of Ca our numerical results indicate that the drop undergoes large deformations. For 
example in figure 6 we compute the transient motions of an initially spherical drop with 
a = 0.9, h = 0.1 and Ca = 1.0. As time increases, we find that a jet of suspending fluid 
penetrates into the surface of the drop from the trailing interface. The trailing end of 
the drop becomes the leading edge of a jet as it travels along the axial axis through the 
original surface of the drop and leaves a thread of fluid in its path. This behaviour 
agrees qualitatively well with the experimental investigations of Olbricht & Kung 
(1992). A time sequence of photographs in their report shows that the leading edge of 
the jet grows in thickness and becomes varicose before it reaches the front interface of 
the drop. Similar results were observed by Goldsmith & Mason (1963). These results 
are also consistent with the steady state calculations of Martinez & Udell (1990) who 
only find steady-state solutions below a critical value of Ca (this was about 0.75 when 
a = 0.726), hence implying a change in the character of the solutions above the critical 
Ca . 

In figure 6 we see that the leading edge of the jet behaves exactly as observed in the 
experiments. As time increases, the thread of outer fluid becomes thinner as the end of 
the tail of the drop folds together. Our computations are terminated when the thread 
is so thin that it is difficult to resolve numerically. However, it is clear that a compound 
drop with a large interior of suspending fluid located near the leading front of the 
original drop is being formed. A critical value of Ca about 2.0 for a = 0.9 and h = 0.1 
was reported by Olbricht & Kung (1992). Our numerical results indicate that Ca = 1.0 
causes the jetting instability to develop, hence implying that the critical Ca is much 
lower than the experimental value. 



208 T. M .  Tsai and M .  J .  Miksis 

(4 

-4 -2 0 2 4 
1 ,  I 

4 1 

-2 0 2 4 6 
1 

Y 0 ~ 1  
-1 L I 

2 4 6 8 10 
*' 

-4 -2 0 2 4 

10 0 2 4 6 8 
1 

r 0 0 1  

- 1  
3 5 7 9 11 13 

Z 

I 
6 8 10 12 14 

1 

- 1 '  ' ' I 
10 12 14 16 18 

-1 ' I 
14 16 18 20 22 

Z 

-1 '  " " " " " 
6 8 10 12 14 16 

11 ' 1 '  I '  I '  I '  I 

0 -  

11 13 15 17 19 21 

-1 0~ 15 17 19 Z 21 23 25 

FIGURE 7. Evolution of an initially ellipsoidal drop with a = 1.2 and h = 0.1 : (a) Ca = 1.0 at 
t = 0, 1, 3, 5 ,  7, 9 ;  (b) Ca = 2.0 at t = 0, 2, 4, 6, 8, 10. 

In figure 7 we consider the case of a larger drop with a = 1.2 and h = 0.1. In figure 
7(a )  we set Ca = 1.0 while in figure 7(b)  we set Ca = 2.0. Note that for Ca = 1.0 the 
drop evolves into a steady state and a small indentation develops on the trailing end 
whereas the smaller drop in figure 6 with a = 0.9 had the jetting behaviour. In figure 
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7(b )  we again find the jetting behaviour but at the larger capillary number of Ca = 2.0. 
Here the outer fluid penetrates the entire length of the original drop before the end of 
the tail closes up. Thus increasing the volume of the drop has also raised the critical 
capillary number at which we lose the stability of the steady states observed in figure 
7(a).  Olbricht & Kung (1992) found that for effective radii greater than 0.95, the critical 
Ca tends to a constant value. This was not observed for the cases we have considered 
but may be possible at larger values of a. We should also note that a jetting behaviour 
was also observed in the computations of Pozrikidis (1992) for a periodic array of 
drops with a less than 1 for small and zero inverse Bond number (i.e. large and infinite 
Ca in our scaling). When jetting occurred with a > 1 his calculations were strongly 
influenced by the periodicity. 

6. Constricted capillary 
The problem of a drop flowing in a constricted capillary is now considered. The 

constriction is given by (2.15). For our initial series of runs we set 1 = 1 and d = 0.3. 
Hence the radius of the tube at its narrowest part is 1 -2d = 0.4. We note that by 
conservation of mass, the fluid velocity increases like 1/(1-2d)' as it flows through the 
constriction. Therefore, as the constriction depth increases, the velocity in the 
constriction would also increase, and we can expect that the solution will become more 
difficult to compute because of the large velocity gradients. In the computations, the 
front of the bubble at t = 0 is always placed at z = - (Z+O. l )  on the upstream side of 
the constriction. 

In figure 8 (a)  we show the evolution of an initially spherical bubble moving through 
a constriction with a = 0.9, h = 0.001 and Ca = 0.1. Because of the small viscosity 
ratio, we refer to this case as a bubble moving in a constriction. Note that after a 
portion of the nose passes the neck of the constriction, the sides of the bubble begin 
to come in, leading to a snap-off, i.e. a portion of the bubble breaks off to form a 
separate bubble. We say that the bubble has snapped off when the radial coordinate 
is less than 0.02 at the point where snap-off occurs. This is a reasonable criterion for 
snap-off since any additional decrease in the neck radius happens very quickly and 
further computations of the solution become difficult because of the large velocity 
gradients in the neighbourhood of the snap-off. It is clear from figure 8 that the snap- 
off point is not located at the centre of the constriction but at the downstream of the 
neck. Also, a closer inspection of the bubble surface velocities indicates that for this 
case there is no backflow at the downstream side of the constriction up to the time 
calculated. In this case, a new bubble is generated by the flush of suspending fluid 
flowing down the constriction from upstream. In figure 8(b)  we plot the jump in 
pressure AP across the constricted capillary as a function of time. Here we define 
AP = p(z  = -6)-p(z = 6) .  It shows that a slight increase in the pressure jump is 
required in order to push the bubble through the constriction. Once the front of the 
bubble passes through the centre of the constriction, the pressure jump drops sharply 
and then continues to decrease slightly as more of the bubble moves through the 
constriction. Then as snap-off is occurring, the pressure jump increases. 

Suppose we now vary Ca and keep all the other parameters fixed. Previous studies 
have pointed out the importance of Ca in determining the bubble speed and the 
thickness of the film left between the bubble and the tube wall. We find that as the 
bubble moves through the constriction each of these effects strongly influences whether 
or not snap-off will occur. Figure 9 shows the evolution of the same bubble as in figure 
8 but with different values of Ca. In figure 9 ( a )  we set Ca = 0.05. Note that the film 
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FIGURE 8. (a) Evolution of an initially spherical bubble with a = 0.9, h = 0.001 and Ca = 0.1 at 
t = 0, 0.25, 0.5, 0.85. (b) Pressure jump across the constricted capillary as a function of time for 
an initially spherical bubble with a = 0.9, h = 0.001 and Ca = 0.1. 
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FIGURE 9. Evolution of an initially spherical bubble with a = 0.9, h = 0.001 : (a) Ca = 0.05 at 
r = 0, 0.25, 0.5 ,..., 2.25; (b)  Ca = 0.2 at t = 0, 0.25, 0.5, 0.75, 1.0, 1.36. 
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left between the bubble and the tube wall is clearly thinner than for Ca = 0.1. 
Consequently, there is less fluid in the neighbourhood of the neck and so the instability 
associated with the growth of the coating film takes longer to develop (see e.g. Gauglitz 
& Radke 1990). Hence the bubble passes through the constriction and attains a steady 
shape at the downstream side of the constriction. On the other hand, for Ca = 0.2, the 
thickness of the film left between the bubble and the tube wall is comparable to that 
for Ca = 0.1. Although the film is thick enough to drive the fluid into the constriction 
from upstream and allow the snap-off instability to grow, the velocity of the bubble is 
so fast that it moves out of the constriction before the instability can grow significantly. 
We note that as the bubble passes through the constriction, a thread of fluid at  the rear 
of the bubble is observed. We expect this thread of fluid to be unstable and to break 
up into pieces. The phenomenon is difficult to capture accurately with our numerical 
method because of the thinness of the thread, so we do not follow it to breakup. Also, 
because of the thinness of the thread, this instability is closely related to the pinch-off 
instability discussed in 94, so we distinguish between the thread breaking up and the 
snap-off of figure 8. Hence for Ca = 0.2 most of the bubble goes through the 
constriction owing to the high velocity of the suspending fluid and leaves a thread at 
its tail which would break into pieces. We have also found this thread of fluid at higher 
capillary numbers. 

The above calculations imply that for a bubble with finite volume, there is a range 
of capillary numbers at which a given bubble will snap off. This should be contrasted 
with the observations of Gauglitz & Radke (1990) who considered the motion of an 
infinite film and a semi-infinite bubble (Gauglitz 1986) in a constricted capillary using 
a lubrication model at low capillary number. They estimate (their equation (23)), for 
a fixed geometry, that the ratio of the travel time for a bubble to move through the 
constriction to the response time of the interface to grow is proportional to the 
capillary number (their capillary number is defined in terms of the velocity of the 
bubble front not the flux, and by bubble they were referring to the front of their semi- 
infinite bubble). We can reinterpret travel time here as the time for a finite bubble to 
pass through the constriction if we make this ratio proportional to the capillary 
number times the ratio of the steady bubble length to the constriction length. Hence 
a given bubble is not expected to snap off at small capillary numbers. But if the 
capillary number is large, we would expect to see snap-off since the interface instability 
grows faster. Our results are consistent with the first prediction but not the second one, 
the most likely reason being that their estimates are for a small capillary number in the 
lubrication limit and also the results in figures 8 and 9 are for finite bubbles. 

So far we have considered the impulsive motion of an initially spherical bubble 
moving through the constriction. Suppose we use the steady-state profiles computed in 
tj5 as initial data and keep the same parameters as in figures 8 and 9. The effect of 
changing these initial data is illustrated in figure 10 which shows the evolution of 
an initial steady-shape bubble passing through the constriction. Note that the initial 
steady shape also depends on Ca. We find that the overall dynamics are similar to the 
initially spherical bubble. However, for Ca = 0.1 where snap-off occurs, the snap-off 
time, 7, defined by the difference between the time when the bubble front passes the 
centre of the constriction and the time snap-off occurs, is shorter for the steady-shape 
bubble (7 = 0.43) than for the spherical bubble (7 = 0.56). Hence the bubble generated 
by the initially steady-shape profile after snap-off has a smaller effective radius (b, = 
0.65) than the spherical bubble case (b, = 0.72). 

We now study the effect of bubble size by increasing the effective radius a. In figure 
11, we show the evolution of an initially steady-shape bubble with a = 1.2. The other 
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FIGURE 10. Evolution of an initially steady shape bubble with u = 0.9, h = 0.001 : (a) Cu = 0.05 at 
t = 0,0.25,0.5, ... ,2.25; (b) Cu = 0.1 at t = 0,0.25,0.5,0.76; (c) Ca = 0.2 at t = 0,0.25,0.5, ... , 1.25, 
and t = 1.42. 

1 

r o  

1 
-1  

- 6  - 5  -4 -3 -2 -1 0 1 2 3 4 

-6 -5 -4 -3  -2 -1 0 1 2 3 4 

I 

r o  

-1 
-6 -4 -2 0 2 4 6 

z 

FIGURE 11. Evolution of an initially steady-shape bubble with u = 1.2, h = 0.001 : (a) Ca = 0.05 at 
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FIGURE 12. (a) Snap-off time T as a function of capillary number for a = 1.2 and h = (b) 
The effective radius of the bubble generated, b,, as a function of capillary number for a = 1.2 and 
A = 10-3.  

parameters are the same as in figure 10. We now see that both the Ca = 0.05 and 
Ca = 0.1 cases snap off. The snap-off times and the effective radius of the bubble 
generated are 7 = 1.66 and b, = 1.06 for Ca = 0.05, and T = 0.42 and b, = 0.64 for 
Ca = 0.1. Hence we see that for Ca = 0.1, T and b, are slightly smaller than for the smaller 
bubble case of a = 0.9. The fact that the Ca = 0.05 case now snaps implies that the 
longer bubble allows extra time for the instability to grow and, in contrast to Ca = 0.1, 
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FIGURE 13. Evolution of a n  initially spherical bubble with a = 0.9, Ca = 0.1 : (a )  h = 0.0005 at  
t = 0, 0.25, 0.5, 0.75, 0.90; (b) h = 0.01 at t = 0, 0.25, 0.5 ,..., 2. 

a weak backflow occurs at the downstream side of the constriction. The Ca = 0.2 
profiles are very similar for both the a = 0.9 and a = 1.2 cases: both have a thread of 
fluid at the rear after most of the bubble has passed through the neck. Figure 12 shows 
the snap-off time, 7, and the effective radius of the generated bubble, b,, as a function 
of Ca for a = 1.2 and h = lov3. We have found snap-off for Ca between 0.05 and 0.16 
corresponding to b, = 1.06 and 0.56, respectively. For smaller capillary number, e.g. 
Ca = 0.03, we have not observed snap-off behaviour. Selective runs for a = 1.4 indicate 
the same values of 7 and b, for Ca = 0.1 and higher. However, for Ca = 0.05, the value 
of b, is slightly larger. 

The dependence of the bubble dynamics on the viscosity ratio is shown in figure 13. 
In figure 13(a) we set h = 0.0005 and in figure 13(b) we set h = 0.01; the other 
parameters are the same as in figure 8. We find that the h = 0.0005 case snaps while 
the h = 0.01 case does not. For the h = 0.001 case of figure 8, we find that 7 = 0.56 and 
b, = 0.72, while for the h = 0.0005 case 7 = 0.60 and b, = 0.74. Hence decreasing h 
increases the snap-off time and the size of the bubble generated. These results illustrate 
the sensitivity of the snap-off mechanism to A. The dynamics for different values of h 
are revealed with an inspection of the surface velocity. After the bubble front passes 
through the neck and before snap-off can occur, the velocity of the suspending fluid 
flowing down the constriction increases with h (since viscous drops are harder to 
deform and can support higher velocity). This means that the potential snap-off points 
for h = 0.0005 move slower than for h = 0.001. However, the bubble speed at the front 
is relatively independent of these small values of A. So the snap-off time is longer for 
the smaller h and a larger bubble is generated. For h = 0.01, the potential snap-off 
points are swept away to the right side of the constriction by the high velocity so no 
snap-off can occur. We note that in our numerical studies we have only considered 
values of h bounded away from zero, because the numerical error increases significantly 
with decreasing A. Similar difficulties have been observed by previous researchers, e.g. 
see Tjahjadi, Stone & Ottino (1992). Hence in order to control this error the runs in 
this section have been mostly done for h = lop3. 

The parameters studied so far are all physical parameters. We now consider the effects 
of geometric parameters, namely the parameters d and I ,  which determine the depth 
and the length of the constriction with the same physical parameters as in figure 11 (b). 
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FIGURE 14. Evolution of an initially steady shape bubble with a = 1.2, h = 0.001 and Ca = 0.1 : (a) 
1 = 0.75 at t = 0, 0.25, 0.5, 0.75, 0.91; (b) I =  2.0 at t = 0, 0.25, 0.5 ,..., 1.0, and t = 1.18. 
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FIGURE 15. Evolution of an initially steady shape bubble with a = 1.2, h = 0.001, Ca = 0.1 and 
d = 0.25 at t = 0, 0.25, 0.5 ,... ,3.0. 

Figure 14 shows the evolution of an initially steady-shape bubble moving through 
constrictions of different lengths. In figure 14(a) we set 1 = 0.75 and find that snap-off 
occurs with 7 = 0.68 and b, = 0.77. In figure 14(b) we set 1 = 2.0 and observe that snap- 
off occurs with 7 = 0.45 and b, = 0.68. Hence the snapped off bubble in this slowly 
varying constriction is slightly larger than the 1 = 1.0 case, but a slightly sharper 
constriction results in a longer snap-off time and a larger bubble. This implies that the 
dynamics is strongly dependent on the shape of the constriction. Also we note that the 
snap-off point occurs to the left of the neck for 1 = 2.0. This upstream snap-off was also 
observed in the lubrication model of Gauglitz (1986) who assumed a slowly varying 
constriction. In figure 15 we set d = 0.25. Hence the constriction is not as deep and we 
see that snap-off no longer occurs. So a critical depth of the constriction is also required 
for snap-off to occur. 

7. Conclusions 
The pressure-driven motion of a bubble (or drop) through a capillary tube has been 

studied here. The solutions were determined by solving the Stokes equations 
numerically with a boundary integral method. Solutions for both a straight and a 
constricted capillary tube were determined. 

In the straight-tube case we were able to determine steady-state solutions for a given 
finite bubble as long as the capillary number was small enough. For larger capillary 
numbers, we found that as we marched in time, the drop elongated and a jet of 
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suspending fluid entered the drop from the back. This behaviour is also typical of what 
has been observed experimentally. 

In a constricted tube we found that if the viscosity ratio was too large, then a bubble 
(or drop) passes through a given constriction. For small viscosity ratio, it is possible 
to select a range of parameters for which a given finite bubble will snap off as it passes 
through a constriction. For the finite bubbles considered in this study, if the capillary 
number was too large or too small the snap-off instability would not occur. In the 
results presented here, only values of the parameters were selected at which a steady- 
state solution of the bubble existed in a straight tube. We should note that the jetting 
instability occurring in a straight tube can also occur as a bubble or drop passes a 
constriction. Hence, it is possible for a drop to pass through a constriction and initiate 
a jetting instability. After the drop passes through the constriction, if a steady-state 
solution exists, then the drop will evolve to it. These results have been observed 
numerically by Miksis & Tsai (1993). 

This research was supported in part by Department of Energy grant DE-FG02- 
88ER13927. 
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